Treating the Hives with Oxalic Acid January 2019

In January, we treated our hives for mites with oxalix acid. Oxalix acid is often used to treat for varroa mites in the winter when there is no brood in the hive. The Sanders came over to help us treat because they had the equipment needed and experience treating with oxalic acid.

Oxalic acid is vaporized into the hive. Because oxalic acid is dangerous when breathed in, anyone vaporizing must wear a respirator to prevent the breathing in of the oxalic acid.


Both Abigail and Bethany were able to help treat the hives. Before either of them helped, they were told how the treatment had to be done. First, the entrances are plugged except for where the vaporizer goes. The powdered oxalic acid is poured into part of the vaporizer. The vaporizer is then stuck into one of the entrances and flipped. The vaporizer is left in the hive for a little bit then removed.


We treated all five hives. This treatment was not a main treatment. It was a clean up treatment that helped give the bees a lower mite count going into spring.


January 5th Peek Into the Bees

On January 5th, we opened up the top of the hives to add sugar to them. It is important for beekeepers to add sugar to the hives throughout the winter to prevent the bees from starving. We only peek into our hives on days that are forty-five degrees or more.


Bethany and Abigail added sugar on this day. They pulled off the outer covers and the winter boxes.


Then they looked to see if the bees needed more sugar. If they needed more sugar, Abigail and Bethany added dry sugar then sprinkled water on top of the sugar.


We only had to check the bees once or twice a month until dandelions started blooming.


Our First Year of Beekeeping in Review

Our first year of beekeeping was filled with learning experiences, challenges, and fun. We loved learning more about the bees as well as learning how to care for them. All our blog posts mentioned are linked.

We say our year started at the Iowa Honey Producers Association’s Annual Conference in 2017 where Abigail received the IHPA Youth Scholarship. The conference was full of good information and was a great way to meet other beekeepers.


Bethany (left) and Abigail (right) at the banquet Friday night of the IHPA Conference.

Our beekeeping equipment came in January. We got three huge boxes.


The three boxes went up to Abigail’s waist!

We built our equipment with the help of our mentors, Mike and Julie Sander. Making frames with a hammer is difficult.


Bethany (left) and Abigail (right) made eighty frames with the help of their mentors and sister.

Beekeeping classes are informative and help create confidence. We loved the Friendly Beekeepers of Iowa beginning beekeeping class. We blogged about each class individually. The picture is featured in 2018 Beekeeping Class: Week Three – Getting Started.


Abigail (left) and Bethany (right) learned a lot at the FBI beekeeping class.

Abigail gave a beekeeping presentation at her 4-H group in March of 2018.


Abigail explains what a super is to her 4-H group.

We completed making our equipment in March by gluing the joints and painting the boxes.


Bethany made sure all the joints were painted really well to ensure the boxes held up well outside.

Because we knew when we were getting out bees, we were able to prepare for the bees by setting out the equipment and making sure it was all level.


Bethany (right) makes sure that the hive is tipped slightly forward to let water run out.

The Central Iowa Beekeepers Association is a great group that has meetings every quarter and has an annual auction. We helped at the auction by helping set up, helping consignors sign in, and Abigail took pictures.

IMG_4465 - Copy - Copy

Bethany shadowed Mr. Mike during the CIBA auction.

We picked up our bees on April 21st, 2018. We got two packages of bees from Spring Valley Honey in Perry, Iowa. When we got home we installed our bees right away. We started with two packages and a established hive.

IMG_4507 - Copy - Copy

Olivia (left), Bethany with her package of bees (middle), and Abigail with her package of bees (right) at Spring Valley Honey.

IMG_4562 - Copy

Bethany (left)and Olivia (middle) work on installing Bethany’s package while Abigail (right) closes up her newly installed hive.


Bethany (left) pouring her bees into their new home.

We built nucs and swarm traps with the help of Mr. Sander. We used the nucs to put splits in and put up the swarm trap in hopes of catching a swarm.


Mr. Sander (left), Abigail (middle left), Bethany (middle right), and Nathan (right) look over the plans before cutting out the pieces.

We inspected our hives for the first time on April 23rd, 2018. Our bees had moved into their hives and had found their queens.


At first, we were concerned that Bethany’s bees were trying to kill their queen. Thankfully, they accepted her as their queen.

We inspected our hives on April 27th, 2018 to make sure that the bees had released their queens and were beginning to fill out the frames. We found Abigail’s queen and saw eggs in Bethany’s hive, Lakti. Maylyn Sorority was doing well.


The frames in the new hives had lots of new, white wax in them.

We put up a swarm trap at our house and a swarm trap at a friend’s house. Unfortunately, we did not catch a swarm.


Our dad helped put up the swarm traps because they were up high in a tree.

The bees had begun to build out their second deep on May 31st.


Bethany (right) is spraying a frame with sugar water.

During our June 9th hive inspection the bees were literally overflowing.


These bees are from Maylyn, the established hive.

Mr. Mike and Mrs. Julie helped us mark the queen from the established hive, Maylyn. We spotted the queen many times throughout the year.


Olivia watches Mr. Mike mark the queen.

We split Maylyn in June of last year. The nuc became Olivia’s hive Primlox.


We shook bees from Maylyn into a nuc.

Olivia and Mom moved Olivia’s nuc into deeps. The bees quickly adapted to their new home.


Olivia (left) is putting a frame of honey into the deep.

We have worked on expanding what products of the hive we make and sell. The bees made honey which we harvested, extracted, bottled, and now sell. We make candles from the beeswax from the hives. We also make two different salves.


Abigail’s honey (left) won second place in the youth honey category at the Iowa State Fair and Bethany’s honey (right) won third place in the same category.

We asked the Sanders to come over and check our hives to see if they were still doing good.


Mrs. Julie helped Olivia while Mr. Mike helped Abigail and Bethany.

By July 21st, we had five hives and three of the hives had supers on them.


Mom (left) is beginning to check her hive. Bethany (middle) is inspecting her bottom super. Abigail (right) is looking at a honey frame.

We extracted our honey with the Sanders as we did not have our own extractor.


Bethany is cutting the cappings off a honey frame.

Our beeswax candles are made from 100% beeswax. We love making them.


This is what our candle set up looks like.

We bottled and labeled all of the honey in August. It was a lot of work, but it was fun to see the process coming along.


Abigail is pouring the honey into the bottles. The bottle sat directly on a scale so that we could fill them all to a similar weight.

Mom, Abigail, Bethany, and Olivia all entered multiple things in the apiary category of the Iowa State Fair. We did quite well at the fair. All four of us won at least one ribbon.


Abigail’s honey frame won sixth place in the adult category.

Abigail, Bethany, Miriam, and Olivia all worked the Iowa Honey Producers Association’s booth at the Iowa State Fair. It was really fun to work the state fair.


Bethany worked the cosmetic counter at the IHPA booth.

Our local beekeeping group is the Des Moines Backyard Beekeepers group. The DMBB’s August meeting was about winter prep.

Plantain salve is great for bug bites, scratches, and bee stings. We wanted to make some because we often get stung while checking the bees.


The plantain salve is only plantain steeped in coconut oil and beeswax.

Mr. Mike helped us do mite rolls so that we could find out how many varroa mites were in our hive. We treated the hives for varroa mites in September of last year.


Mr. Mike collects bees in a jar to check for mites.

We treated for varroa mites using Apiguard immediately following pulling off the supers. We tried multiple treatments for small hive beetles, but only swiffer sheets worked.

Beeswax lib balm is amazing. It really improves how one’s lips feel. Abigail loves making beeswax lip balm.


Our two little brothers “helped” Abigail make a lip balm tube holder.

In our blog post Treating for Varroa Mites, we explain why we choose the treatment we choose.

We checked our bees after treatment to see how strong they were. Based on this hive check, we decided to feed the hives sugar syrup.


We all checked our own hives to make sure they had a queen and had brood.

The Central Iowa Beekeepers Associations September meeting was at the
Dr. Amy Toth Lab Bee Field Station, in Ames, Iowa. It was an incredibly informative meeting.


The researches at Iowa State are studying pollen from year to year along with many other things.

To prepare the bees for winter, we fed them.


Abigail pouring sugar syrup into a feeder.

Winter boxes help prevent moisture from dripping on the bees as well as provide room for mountain camping.


Abigail created trenches in the winter boxes to allow for ventilation.

Every year the Iowa Honey Producers Association has a conference. The conferences are always filled with information. We were able to attend most of the first day of the conference.

Abigail received her certificate of completion of the IHPA Youth Scholarship Program on the second day of the IHPA Conference.


Mr Mike and Abigail both received certificates of completion of the IHPA Youth Scholarship Program. Mr. Sander as a mentor and Abigail as the student.

Abigail gave a presentation at the Iowa Honey Producers Conference during the Youth Scholarship Luncheon. She shared about her first year of beekeeping.


Here is Abigail giving her presentation.

Our first year of beekeeping has been awesome. We have really enjoyed learning about the bees and growing our apiary. We are looking forward to continuing our adventure.


Winter Decisions for a Weak Hive

When beekeepers have a weak hive that they think will not make it through the winter they have to decide whether they want to combine them with a strong hive or let them survive on their own with a high chance of death.

One of Bethany’s hives, Lakti, was weak. They made a queen sometime in the fall that we saw. A few weeks later the hive did not have a queen. We let the bees try to make an emergency queen and a few weeks later, we saw eggs but no brood comb only drone comb. We were not sure if this hive had a drone laying queen, a laying worker, or a viable queen that was just taking her time.

The drone eggs showed up in mid to late September. There are not a lot of drones out for mating in the fall which does not allow for queens to be mated well. If we added a frame of eggs to Lakti the bees maybe would make a queen, but she would not start laying eggs until late October. In September, we could hope that if she was a drone laying queen she would become queen right (begin to lay worker eggs) and build up the hive in time for winter. Another option was to combine Lakti with its split to make one big, strong hive.

In the end, we decided to leave the hive alone because combining a weak hive with a strong hive makes the strong hive into an okay hive. Also we would still lose a hive. Stay tuned for an update on Lakti.


The 2018 IHPA Annual Conference – Day Two

The second day of the Iowa Honey Producers Conference included more presentations and the Youth Scholarship Luncheon. Here is the link to our blog post on the first day of the IHPA conference. Saturday started with the introduction of the new board and the contest awards.

Abigail and Olivia laid out the name tags for the Youth Scholarship Recipients.


The map shows where the Youth Scholarship Recipients are located.


The first presentation we sat in on was Varroa Feed on Hemolymph and Two Other Alternate Facts given by Dr. Sammy Ramsey. Dr. Ramsey began his presentation by stating that varroa mites wiped out feral bees around 1997, ten years after their arrival. The purpose of Dr. Ramsey’s presentation was to walk through the process of how he discovered that varroa mites do not feed on Hemolymph (blood).

What varroa mites feed on has not been confirmed because their feeding behavior is very hard to observe. The first hypothesis Dr. Ramsey developed was mite digestive system and excrement shows similarities to other hemolymph or fluid feeding arthropods. This theory expects that varroa mite feces is very watery because hemolymph has a high water content. He observed, however, was >95% guanine with very little water content. Another expected proof based on this theory is the digestive system has a filter chamber-like modification perfect for digesting hemolymph. The observed was that their were no modifications to shunt excess water away from midgut. This means that the varroa mite’s digestive system is not made for digesting hemolymph. So there is no proof that the mite digestive system and excrement show similarities to other hemolymph or fluid feeding arthropods.

The second hypothesis Dr. Ramsey developed was varroa mite lineage shows that varroa mites are closely related to other lymph feeders. The expected is that varroa are closely related to other dilute fluid-feeding mites. Mites, however, are closely related to predatory mites that feed through extra-oral digestion. When varroa mites were compared to these other mites, it was found that they share similar digestive system structuring.

The third hypothesis Dr. Ramsey developed to prove that varroa mites feed on hemolymph was varroa mites are observed feeding wherever hemolymph is present. The expected is that the varroa mites are able to feed from a variety of location. Varroa mites, however, strongly prefer the underside of the bees thorax and abdomen.

The next hypothesis is varroa feed exclusively on the hemolymph of adult and immature bees. Of course, this hypothesis is automatically wrong if varroa mites do not feed on hemolymph.

The next hypothesis is varroa mites will usually be found on top of the worker bee’s thorax. This is false. Varroa mites are most often found on the underside of the bees thorax and abdomen.

When a varroa mite is on an adult bee it feeds on the bee. The mite pushes itself between the bees plates and the mite pierces multiple layers of soft tissue. The varroa mite than sucks out some of the bees fat body (which acts as the bee’s liver) and uses extra oral digestion to digest it. Varroa mites do not feed on hemolymph, but on fat body.

Varroa mites feeding on the honey bees’ fat body effects the honey bees’ growth and development, metamorphosis, nutrient storage and mobilization, metabolic activity, water loss and osmoregulation (this has to do with the control of water in the honey bee’s body), temperature regulation, pesticide detoxification, protein synthesis, immune function, and viteliogenesis (part of reproduction). As you can see varroa mites feeding on honey bees result in all sort of problems in the bees body which causes problems in the colony. It is incredibly important that beekeepers know how to prevent varroa mites from overrunning their hives.

What should the change in our knowledge of what varroa mites actually feed on cause beekeepers to do? It should cause us to reevaluate how we treat for them. Here is the link to Dr. Ramsey’s Facebook page.

Dr. Ramsey’s interview in Bee Culture.

Academic article explaining the research and results.

Beekeeping Today Podcast.

The second presentation was given by Dr. Megan Milbrath. Her presentation was entitled Do You Know What to Do about American Foulbrood. American Foulbrood is a bacteria and can form spores. AFB is environmentally stable. It has been around since around 1967 and has the potential to devastate a beekeeping operation. AFB is not related to European Foulbrood (EFB). There is only one type of AFB in America and it has a lower virulence. Fun fact: Humans can get AFB only if they inject honey with AFB spores into their bloodstream. (Do NOT inject honey into your bloodstream!)

How does AFB get spread? AFB is often spread by a beekeeper moving equipment around in a apiary or between apiaries. AFB can also be spread through robbing or swarming. Unlike a lot of honey bee diseases, AFB is not brought on by stress. AFB is also not caused by a failing queen. To prevent AFB from spreading beekeepers can practice good hive hygiene. They can wash their hands between apiary locations and wear gloves. Another important step to prevent the spreading of AFB is to clean hive tools between apiary locations. Hive tools can be cleaned with bleach or they can be cleaned with flame. A lot of beekeepers will stick their hive tools in their smokers to clean them.

It takes less than ten AFB spores to cause a hive to be infected. The spores only effect larvae at 12-48 hours. The larvae are often fed food with AFB spores in it. Nurse bees spread AFB because the spores can remain in nurse bee’s crops. The first step to a hive becoming infected is the introduction of spores. Once spores are introduced and the proper conditions exist the spores germinate. Next the spores reproduce. Once their is no more food for itself, the disease turns back into spores. AFB kills bees from the inside out. The honey bee larvae eat food infected with AFB spores and the spores fill the larvae’s intestine. The spores actually disintegrates the bee from the inside. The larvae dies just as it is being capped.

How can a beekeeper prevent AFB? AFB is not yet a normal occurrence and practicing good hive hygiene helps prevent it. Once AFB is in a hive, there is nothing a beekeeper can do to get rid of it because spores last for up to seventy years. Early detection is key to preventing AFB from spreading. Three signs of AFB that are not unique to AFB are a spotty brood pattern, sunken cappings, and holes in cappings. A spotty brood pattern may be a sign of AFB because some of the larvae dies due to AFB, but some of the larvae makes it to adulthood. Sunken cappings may be a sign of AFB because the larvae died after being capped and the cappings sunk because the disintegrated larvae did not keep them up. Hole in cappings are a sign that the bee died before it could be completely capped. Three signs of AFB unique to AFB are caramel colored dead larvae, pupal tongue sticking out, larvael scales, and the characteristic smell. When a hive is infected with AFB, the dead larvae are caramel covered and their tongues are sticking out. Caramel colored brood and sticking out tongues are not always present in a hive infected with AFB and not every beekeeper can smell the characteristic smell. The dead larvae appear scaly on the frame of a hive infected with AFB.

If a beekeeper suspects he has AFB, he should take a field test and send a sample into the National Laboratory. There are four types of tests their are commercial diagnostic tests, the match stick test, the Holst milk test, and the Elisa test. If you would like to know more about any of these tests, google them. In Iowa, AFB is a reportable disease. If a beekeeper has AFB, some states require him to burn the hive (equipment and bees) and bury the ashes. In Iowa a beekeeper must destroy all the bees and the comb. Here is the link to the Iowa government page that describes protocol for AFB. Not all states require that the equipment be burned. The goal of the beekeeper is to stop the infection and to prevent the spores from forming. Dr. Milbrath said that the best option is to burn at least the comb and the bees. Bees and equipment can also be disposed by being double bagged in contractor’s bags and disposed at the landfill. If everything does not have to be burned, then the beekeeper can shake the bees into a completely new hive, treated with antibiotics, and the yard should be treated as a quarantine for a whole year. The antibiotics should be transitionally stopped throughout the year. Equipment that is not burned should always be sterilized.

AFB can infect any colony and spreads easy. Eliminating the spores is critical to preventing AFB. Bees with hygienic behavior may be good at preventing AFB from spreading. Here is the link to Dr. Milbrath’s website.

Our friend, Joanna, is a 2019 IHPA Youth Scholarship Recipient. Before lunch, Abigail, Joanna, and the 2018 and 2019 IHPA Youth Scholarship Recipients socialized and shared their years and talked bees.


Here are Mom and Olivia waiting for the Youth Scholarship Lunch to begin.


Here is Olivia, Mr. Mike, and Abigail talking about Abigail’s first year of beekeeping.


Here is Abigail giving her presentation. We blogged her presentation in this blog post.


Here is Abigail receiving her certificate of completion and Mr. Mike receiving his award for being a mentor.


Here is Abigail and Mr. Mike with their certificates.


Here are the 2019 Youth Scholarship Recipients. We wish them all the luck as they begin their beekeeping adventure.


The next presentation Abigail and Miriam sat in on was Very Advanced Queen Rearing by Dr. Tom Repas. The first question he posed was “Why would a beekeeper rear a queen?” One reason is cost. A “homemade” queen is free. She is also available whenever you can make her. The selection is much greater when a beekeeper makes his own queens because a beekeeper never makes just one queen. A beekeeper may choose to sell his queens which can be a source of income. Home reared queens tend to have a higher quality than bought queens. Since queen quality is so important, Dr. Repas explained what it is. A quality queen lays a large number of quality bee, produces viable offspring, and passes on genetics. A poor queen will create a less productive colony; while a productive queen will create a strong, productive hive. A longer queen is a better queen.

The quality of a queen is based on how she was raised, how healthy she is, and how well inseminated she is. Bees can raise their own queens and often do. An emergency queen the bees raise may not be as high quality a queen. A grafted queen is a queen a beekeeper decides the bees need to raise but not keep. The age of the larvae when grafted is very important. Small, young larvae are best for grafting. A beekeeper must know what kind of chemicals are around when he is grafting. Chemicals can affect the queens biology and physiology. Nosema and varroa caused viruses can effect the quality of the queen. Honey production is related to the queen’s quality.

Genetic diversity in a queen results in higher colony productivity, reduced brood diseases, and greater colony survival. New genetics are not introduced often into a hive. Well mated queens will create diverse offspring. Dr. Repas said that five million or more stored sperm cells in a queen is ideal. Poorly mated queens are more common in queens raised in the spring and late in the year.

The rate of supersedure is significantly less for local queens. This difference in supersedure is due to transporter stress. The longer a queen is allowed to lay before shipment increases her chances of acceptance. Supplemental feeding may not have an effect on queens. Honey bees should only be fed when needed. Feeding increases acceptance rate.

How should queens be assessed? Queens performance, physical characteristics, and health should all be monitored. She should have skipped less than 10% of the cells on a frame. There should be the proper amount of drones in the hive which varies depending on the time of year.

What practices are essential to making quality queens. A good breeder queen will produce quality queens. Some queens are just not fit to make queens and after a couple years queens are no longer viable and need to be replaced. Queen producing colonies should be well fed. Queen producing colonies can be additionally fed to be sure they are strong and healthy. There should be lots of unrelated drones around when queens are produced. This helps ensure diverse genetics. Warm, sunny days are preferred for queen rearing.

There are a couple different ways to go about making a queen. Three ways are mating nucs, emergency response, and an overcrowded, well-fed hive. A mating nuc is used because the beekeeper wants to have a small, easily controlled hive to make queens in. Emergency response is not a good way to make queens because emergency queens are not often quality queens. Some beekeepers make queens in overcrowded, well-fed hives. The bees make queens in this hive because they are so crowded that they want to swarm. The beekeeper then keeps the queens and does not let the bees swarm.

Next Dr. Repas described how to make a queen. If you are interested in learning about how beekeepers make queens, I would suggest watching some YouTube videos. I am not going to write out the process here because it is very complex and I am not sure I understand all the steps yet. Dr. Repas main point was well-bred, well-fed, and well-mated queens is the goal of raising queens.

Ellen Bell also gave a presentation on queen rearing. She gave it at the same time as Dr. Repas so Mom, Bethany, and Olivia sat in on her presentation. Ellen Bell stressed the importance of local queens and how they are more reliable than queens that have been brought in. She said it is especially important to make queens from overwintered colonies because the beekeeper knows they are hardy bees.


One good way to collect and keep data is through Facebook bee groups and bee clubs. Our blog is even a way to collect data because we share what we have learned and what we have done. By electrically monitoring beehives, a beekeeper can learn what is going on in their hives. The benefit of electronic monitoring is being able to constantly check on them. A beekeeper can electrically monitor their hive’s weight, temperature, humidity, sound, motion, and video. All of this data can be collected and kept for comparisons. A beekeeper then can compare how beekeeping has changed throughout the years. Fun fact: One bee weighs 1/10 of a gram.

The final presentation we sat in was Treatment Free Beekeeping presented by Joy Westercamp, the 2018 IHPA Honey Queen. She started her presentation by saying that every beekeeper defines “treatment free” differently. Joy defines “treatment free” as not using any chemicals. Joy has been treatment free for seven of eight years. She has Minnesota hygienics bees. She uses screened bottom boards that she leaves open all year long. She does brood brakes for her comb honey hives and drone frames in every hive body.

Why would a beekeeper be treatment free? One reason is the beekeeper does not have to spend any time or money on treatments. Another reason is some pests and diseases are resistant to treatments and more and more are becoming resistant. Some treatments can be harmed by chemicals. This is especially true if the beekeeper uses the chemical incorrectly. The beekeeper can be harmed by some of the chemicals. For example, if a beekeeper does not wear a respirator when vaporizing oxalic acid, he may be harmed by breathing it in. The final reason is some consumers prefer to buy honey and other products from treatment free beekeepers.

How does a beekeeper prevent pests and diseases from overtaking their hives if they are treatment free? A treatment free beekeeper uses some specific management practices. Brood breaks are used by treatment free beekeepers to prevent varroa mites from overrunning the colony. Brood breaks prevent the varroa mites from reproducing. A beekeeper will split or replace the queen to create a brood break. Drone trapping is another method of varroa mite prevention. Varroa mites prefer to reproduce in drone cells. A beekeeper will put a drone frame into the hive and the bees will build it out and have the queen lay eggs in the cells. Then, once the brood is capped, the beekeeper will pull out the drone frame, freeze the frame, then will scratch open the cells, and count how many mites are on the brood. A treatment free beekeeper may use a screened bottom board to prevent the buildup of varroa mites. When the varroa mites fall of the bees, the mites fall through the screen. Another varroa prevention method is sprinkling powder sugar on the top of the boxes. The varroa mites will either be knocked off the bees or the bees will clean them off. Then the varroa mites will fall to the bottom of the hive where they will either fall through a screened bottom board or stick to a tray with petroleum jelly on it. A treatment free beekeeper will feed yearly and often to keep the bees strong and healthy. Treatment free beekeepers will break down their small unproductive colonies. Treatment free beekeepers try to only keep the strongest hives because then eventually only strong stock will be around. TF beekeepers cull their comb early and often. Comb culling prevents the buildup of diseases. Resistant stocks is what treatment free beekeepers like to have. Russians, varroa sensitive hygienics (VSH), Minnesota hygienics, and Purdue ankle biters are some of the more common resistant stocks. Hygienic behavior can help with AFB (as discussed above), chalkbrood, virus loads, deformed wing virus, and Kashmir virus.

The IHPA was an excellent, information packed conference. We really enjoyed it and learned a lot. We are very excited for the 2019 conference.


Abigail’s Winter Reads 2018/2019

Over the winter is a great time for beekeepers to read up. Abigail read quite a few books over the winter on beeswax because she had to prepare for a 4-H presentation on beeswax.

Honey: Nature’s Golden Healer by Gloria Havenhand talks all about the health benefits of honey, beeswax, propolis, and even royal jelly. It was a very interesting book and made me want to go eat a bunch of honey. I am unsure just how much of it is true since it seems to claim that honey heals everything. I can say, however, that there has been plenty of evidence that honey and other beehive products have health benefits.

Honey Crafting: From Delicious Honey Butter to Healing Salves, Projects for Your Home Straight from the Hive by Leeann Coleman is an excellent book filled with honey recipes and beeswax crafts and products. Our Mom’s Favorite Body Cream (that we sell on Our Honey Bee Store) recipe comes from this book. This was my favorite recipe book that I read this winter.

Beeswax Alchemy: How to Make Your Own Soap, Candles, Balms, Creams, and Salves from the Hive by Petra Ahnert was another recipe book. This book had some very interesting products in it. It also had quite a few interesting beeswax crafts.

Abigail read only the beeswax related parts of The Backyard Beekeeper by Kim Flottum, but she has read this book before. This book had an interesting section on solar melters. A solar melter is a box that uses the suns rays to melt beeswax.

Homegrown Honey Bees: An Absolute Beginner’s Guide to Beekeeping Your First Year, from Hiving to Honey Harvest by Alethea Morrison is my all time favorite beekeeping book. It shows what a beekeepers first year looks like. It has lots of pictures and fun stories.

Note: These links are not affiliate links and we do not make any money if you buy from them.


Working a Vendor Fair in December

In December, Bethany, Abigail, and Mom worked a vendor fair for the Sanders. This fair was in Polk City. It was in a small building so it made it easy to talk to the other vendors and we enjoyed talking to them. We kept records of sales, rearranged product in the store nearby where the Sanders sell some honey, and packed up by ourselves.

Here is Bethany and Abigail behind the table.


Some important things to bring to a vendor fair are chairs to sit in, something to give away (in this case the bee erasers), and bags to put the sold products in. It is also important to make sure clothing is professional, but also represents your product. That is why we wore our bee shirts. We really enjoyed working this vendor fair and learned a lot from it.